terça-feira, 21 de fevereiro de 2017

Trabalhando com Material Dourado e Blocos Lógicos nas Séries Iniciais
Karen Daltoé
Sueli Strelow
Maria Montessori
Maria Montessori (1870-1952), nasceu na Itália. Interessou-se pelo estudo das ciências, mas decidiu-se pela Medicina, na Universidade de Roma. Direcionou a carreira para a psiquiatria e logo se interessou por crianças  deficientes. “A grande contribuição de Maria Montessori à moderna pedagogia foi a tomada de consciência da criança”, percebendo que estas respondiam com rapidez e entusiasmo aos estímulos para realizar tarefas, exercitando as habilidades motoras e experimentando autonomia.
Devido sua formação médica teve fortes influências positivistas, acreditava na experiência sensível externa que dá ao homem o progresso da inteligência, para que ele possa deixar de egoísmo e viver também  para os outros.


Para ela a educação deve ser efetivada em etapas gradativas, respeitando a fase de desenvolvimento da criança, através de um processo de observação e dedução constante, feito pelo professor sobre o aluno. Na sua visão a criança traz consigo forças inatas interiores, pré-disponibilizada para aprender mesmo sem a ajuda do alheio, partiu de um princípio básico: A CRIANÇA É CAPAZ DE APRENDER NATURALMENTE. Buscando desenvolver essas energias, acredita que o educando adquire conhecimento e se torna livre para a expressão do seu ser através da liberdade do seu potencial, disse: “DEIXE A CRIANÇA LIVRE, E ELA SE REVELARÁ”. Segundo Montessori , na sala de aula o professor é uma espécie de orientador que ajuda a direcionar o indivíduo no seu desenvolvimento espontâneo, para que o mesmo não desvie do caminho traçado, assegurando a livre expressão do seu ser, sua exigência com o professor era: RESPEITO À CRIANÇA.
A escola criada por Montessori prima pela educação que leva em conta o ser total, também a criança como um todo: a interdependência corpo-mente. O homem não é um ser acabado, pronto. É alguém “em trânsito”, a caminho, sujeito a todas as mutações da Cultura. Para ela, educar é semear, é transmitir VIVÊNCIA. O educador educa através de ATITUDES, que servem como apoio/referencial para criança. Isso mostra sua preocupação com o bem-estar e social da criança e também com o aspecto prático da educação. Ainda segundo ela, a criança aprende mexendo-se (aprendizagem-movimento) num ambiente previamente preparado.
Sua escola foi totalmente adaptada para atender as necessidades da criança, favorecendo a independência do aluno.
DESCOBRIR O MUNDO PELO TOQUE
Nas escolas montessorianas o espaço interno era (e é) cuidadosamente preparado para permitir aos alunos movimentos livres, facilitando o desenvolvimento da independência e da iniciativa pessoal. Assim como o ambiente, a atividade sensorial e motora desempenha função essencial. Ou seja, dar vazão à tendência natural que a garotada tem de tocar e manipular tudo que está a seu alcance.
Maria Montessori defendia que o caminho do intelecto passa pelas mãos, porque é por meio do movimento e do toque que os pequenos exploram e decodificam o muno ao seu redor. “A criança ama tocar os objetos para depois poder reconhecê-los”, disse certa vez. Muitos dos exercícios desenvolvidos pela educadora – hoje utilizados largamente na Educação Infantil – objetivam chamar a atenção dos alunos para as propriedades dos objetos (tamanho, forma, cor, textura, peso, cheiro, barulho).
O método Montessori parte do concreto rumo ao abstrato. Baseia-se na observação de que meninos e meninas aprendem melhor pela experiência direta de procura e descoberta. Para tornar esse processo o mais rico possível, a educadora italiana desenvolveu os materiais didáticos que constituem um dos aspectos mais conhecidos de seu trabalho. São objetos simples, mas muito atraentes, e projetados para provocar o raciocínio. Há materiais pensados para auxiliar todo tipo de aprendizado, do sistema decimal à estrutura da linguagem.
Exemplos desses materiais: blocos maciços de madeira para encaixe de cilindros, blocos de madeira agrupados em três sistemas, encaixes geométricos, material das cores, barras com segmentos coloridos vermelho/azul, algarismos em lixa, blocos lógicos, material dourado, cuisenaire, ábaco, dominó, etc.

MATERIAL DOURADO

"Preparei também, para os maiorezinhos do curso elementar, um material destinado a representar os números sob forma geométrica. Trata-se do excelente material denominado material das contas. As unidades são representadas por pequenas contas amarelas; a dezena (ou número 10) é formada por uma barra de dez contas enfiadas num arame bem duro. Esta barra é repetida 10 vezes em dez outras barras ligadas entre si, formando um quadrado, "o quadrado de dez", somando o total de cem. Finalmente, dez quadrados sobrepostos e ligados formando um cubo, "o cubo de 10", isto é, 1000.
Aconteceu de crianças de quatro anos de idade ficarem atraídas por esses objetos brilhantes e facilmente manejáveis. Para surpresa nossa, puseram-se a combiná-los, imitando as crianças maiores. Surgiu assim um tal entusiasmo pelo trabalho com os números, particularmente com o sistema decimal, que se pôde afirmar que os exercícios de aritmética tinham se tornado apaixonantes.
As crianças foram compondo números até 1000. O desenvolvimento ulterior foi maravilhoso, a tal ponto que houve crianças de cinco anos que fizeram as quatro operações com números de milhares de unidades".
O Material Dourado é um dos muitos materiais idealizados pela médica e educadora italiana Maria Montessori para o trabalho com matemática.
Embora especialmente elaborado para o trabalho com aritmética, a idealização deste material seguiu os mesmos princípios montessorianos para a criação de qualquer um dos seus materiais, a educação sensorial:
  • desenvolver na criança a independência, confiança em si mesma, a concentração, a coordenação e a ordem;
  • gerar e desenvolver experiências concretas estruturadas para conduzir, gradualmente, a abstrações cada vez maiores;
  • fazer a criança, por ela mesma, perceber os possíveis erros que comete ao realizar uma determinada ação com o material;
  • trabalhar com os sentidos da criança.
Inicialmente, o Material Dourado era conhecido como "Material das Contas Douradas" e sua forma era a seguinte:
mdb8.JPG (10069 bytes)

Embora esse material permitisse que as próprias crianças compusessem as dezenas e centenas, a imprecisão das medidas dos quadrados e cubos se constituía num problema ao serem realizadas atividades com números decimais e raiz quadrada, entre outras aplicações possíveis para o material de contas. Foi por isso que Lubienska de Lenval, seguidor de Montessori, fez uma modificação no material inicial e o construiu em madeira na forma que encontramos atualmente.
mdb1.JPG (11182 bytes)
O nome "Material Dourado" vem do original "Material de Contas Douradas". Em analogia às contas, o material apresenta sulcos em forma de quadrados. Pode-se fazer uma adaptação do material dourado para o trabalho em sala de aula, com papel quadriculado de 1cm X 1 cm, onde as peças são feitas da seguinte forma:
mdb2.JPG (8064 bytes)
unidade           dezena           centena
(1 X1)           (1 X 10)         (10 X 10)
Este material em papel possui a limitação de não ser possível a construção do bloco, o que é uma desvantagem em relação ao material em madeira.
O primeiro contato do aluno com o material deve ocorrer de forma lúdica para que ele possa explorá-lo livremente. É nesse momento que a criança percebe a forma, a constituição e os tipos de peça do material.
Ao desenvolver as atividades o professor pode pedir às crianças que elas mesmas atribuam nomes aos diferentes tipos de peças do material e criem uma forma própria de registrar o que vão fazendo. Seria conveniente que o professor trabalhasse durante algum tempo com a linguagem das crianças para depois adotar os nomes convencionais: cubinho, barra, placa e bloco.
O material dourado destina-se a atividades que auxiliam o ensino e a aprendizagem do sistema de numeração decimal-posicional e dos métodos para efetuar as operações fundamentais (ou seja, os algoritmos).
No ensino tradicional, as crianças acabam "dominando" os algoritmos a partir de treinos cansativos, mas sem conseguirem compreender o que fazem. Com o material dourado a situação é outra: as relações numéricas abstratas passam a ter uma imagem concreta, facilitando a compreensão. Obtém-se, então, além da compreensão dos algoritmos, um notável desenvolvimento do raciocínio e um aprendizado bem mais agradável.
O material, mesmo sendo destinado ao trabalho com números (na matemática) pode ser utilizado com crianças de até seis anos de idade, para desenvolver a criatividade, motricidade e o raciocínio lógico-matemático.
 
ATIVIDADES:
1. JOGOS LIVRES
Objetivo : tomar contato com o material, de maneira livre, sem regras.
Durante algum tempo, os alunos brincam com o material, fazendo construções livres. O material dourado é construído de maneira a representar um sistema de agrupamento. Sendo assim, muitas vezes as crianças descobrem sozinhas relações entre as peças. Por exemplo, podemos encontrar alunos que concluem:
- Ah! A barra é formada por 10 cubinhos!
- E a placa é formada por 10 barras!
- Veja, o cubo é formado por 10 placas!
2. MONTAGEM
Objetivo: perceber as relações que há entre as peças.
O professor sugere as seguintes montagens:
- uma barra;
- uma placa feita de barras;
- uma placa feita de cubinhos;
- um bloco feito de barras;
- um bloco feito de placas;
O professor estimula os alunos a obterem conclusões com perguntas como estas:
- Quantos cubinhos vão formar uma barra?
- E quantos formarão uma placa?
- Quantas barras preciso para formar uma placa?
Nesta atividade também é possível explorar conceitos geométricos, propondo desafios como estes:
- Vamos ver quem consegue montar um cubo com 8 cubinhos? É possível?
- E com 27? É possível?

3. DITADO
Objetivo: relacionar cada grupo de peças ao seu valor numérico.
O professor mostra, um de cada vez, cartões com números. As crianças devem mostrar as peças correspondentes, utilizando a menor quantidade delas.
 
Variação:
O professor mostra peças, uma de cada vez, e os alunos escrevem a quantidade correspondente.
4. FAZENDO TROCAS
Objetivo: compreender as características do sistema decimal.
- fazer agrupamentos de 10 em 10;
- fazer reagrupamentos;
- fazer trocas;
- estimular o cálculo mental.
Para esta atividade, cada grupo deve ter um dado marcado de 4 a 9.
Cada criança do grupo, na sua vez de jogar, lança o dado e retira para si a quantidade de cubinhos correspondente ao número que sair no dado.
Veja bem: o número que sai no dado dá direito a retirar somente cubinhos.
Toda vez que uma criança juntar 10 cubinhos, ela deve trocar os 10 cubinhos por uma barra. E aí ela tem direito de jogar novamente.
Da mesma maneira, quando tiver 10 barrinhas, pode trocar as 10 barrinhas por uma placa e então jogar novamente.
O jogo termina, por exemplo, quando algum aluno consegue formar duas placas.
O professor então pergunta:
- Quem ganhou o jogo?
- Por quê?
Se houver dúvida, fazer as "destrocas".
O objetivo do jogo das trocas é a compreensão dos agrupamentos de dez em dez (dez unidades formam uma dezena, dez dezenas formam uma centena, etc.), característicos do sistema decimal.
A compreensão dos agrupamentos na base 10 é muito importante para o real entendimento das técnicas operatórias das operações fundamentais.
O fato de a troca ser premiada com o direito de jogar novamente aumenta a atenção da criança no jogo. Ao mesmo tempo, estimula seu cálculo mental. Ela começa a calcular mentalmente quanto falta para juntar 10, ou seja, quanto falta para que ela consiga fazer uma nova troca.
* cada placa será destrocada por 10 barras;
* cada barra será destrocada por 10 cubinhos.
 
Variações:
Pode-se jogar com dois dados e o aluno pega tantos cubinhos quanto for a soma dos números que tirar dos dados. Pode-se utilizar também uma roleta indicando de 1 a 9.
5. PREENCHENDO TABELAS
Objetivo: os mesmos das atividades 3 e 4.
- preencher tabelas respeitando o valor posicional;
- fazer comparações de números;
- fazer ordenação de números.
As regras são as mesmas da atividade 4. Na apuração, cada criança escreve em uma tabela a quantidade conseguida.
Olhando a tabela, devem responder perguntas como estas:
- Quem conseguiu a peça de maior valor?
- E de menor valor?
- Quantas barras Lucilia tem a mais que Gláucia?
Olhando a tabela à procura do vencedor, a criança compara os números e percebe o valor posicional de cada algarismo.
Por exemplo: na posição das dezenas, o 2 vale 20; na posição das centenas vale 200.
Ao tentar determinar os demais colocados (segundo, terceiro e quarto lugares) a criança começa a ordenar os números.
6. PARTINDO DE CUBINHOS
Objetivo: os mesmos da atividade 3, 4 e 5.
Cada criança recebe um certo número de cubinhos para trocar por barras e depois por placas.
A seguir deve escrever na tabela os números correspondentes às quantidades de placas, barras e cubinhos obtidos após as trocas.
Esta atividade torna-se interessante na medida em que se aumenta o número de cubinhos.

7. VAMOS FAZER UM TREM?
Objetivo: compreender que o sucessor é o que tem " 1 a mais" na seqüência numérica.
O professor combina com os alunos:
- Vamos fazer um trem. O primeiro vagão é um cubinho. O vagão seguinte terá um cubinho a mais que o anterior e assim por diante. O último vagão será formado por duas barras.
Quando as crianças terminarem de montar o trem, recebem papeletas nas quais devem escrever o código de cada vagão.
Esta atividade leva à formação da idéia de sucessor. Fica claro para a criança o "mais um", na seqüência dos números. Ela contribui também para a melhor compreensão do valor posicional dos algarismos na escrita dos números.

8. UM TREM ESPECIAL
Objetivo: compreender que o antecessor é o que tem " 1 a menos" na seqüência numérica.
O professor combina com os alunos:
- Vamos fazer um trem especial. O primeiro vagão é formado por duas barras (desenha as barras na lousa). O vagão seguinte tem um cubo a menos e assim por diante. O último vagão será um cubinho.
Quando as crianças terminam de montar o trem, recebem papeletas nas quais devem escrever o código de cada vagão.
Esta atividade trabalha a idéia de antecessor. Fica claro para a criança o "menos um" na seqüência dos números. Ela contribui também para uma melhor compreensão do valor posicional dos algarismos na escrita dos números.
9. JOGO DOS CARTÕES
Objetivos: compreender o mecanismo do "vai um" nas adições; estimular o cálculo mental.
O professor coloca no centro do grupo alguns cartões virados para baixo. Nestes cartões estão escritos números entre 50 e 70.
1º sorteio: Um aluno do grupo sorteia um cartão. Os demais devem pegar as peças correspondentes ao número sorteado.
Em seguida, um representante do grupo vai à lousa e registra em uma tabela os números correspondentes às quantidades de peças.
2º sorteio: Um outro aluno sorteia um segundo cartão. Os demais devem pegar as peças correspondentes a esse segundo número sorteado.
Em seguida, o representante do grupo vai à tabela registrar a nova quantidade.
Nesse ponto, juntam-se as duas quantidades de peças, fazem-se as trocas e novamente completa-se a tabela.
Ela pode ficar assim:
Isto encerra uma rodada e vence o grupo que tiver conseguido maior total. Depois são feitas mais algumas rodadas e o vencedor do dia é o grupo que mais rodadas venceu.
Os números dos cartões podem ser outros. Por exemplo, números entre 10 e 30, na primeira série; entre 145 e 165, na segunda série.
Depois que os alunos estiverem realizando as trocas e os registros com desenvoltura, o professor pode apresentar a técnica do "vai um" a partir de uma adição como, por exemplo, 15 + 16.
Observe que somar 15 com 16 corresponde a juntar estes conjuntos de peças.
Fazendo as trocas necessárias,
Compare, agora, a operação:

* com o material:
*com os números:
 
Ao aplicar o "vai um", o professor pode concretizar cada passagem do cálculo usando o material ou desenhos do material, como os que mostramos.
O "vai um" também pode indicar a troca de 10 dezenas por uma centena, ou 10 centenas por 1 milhar, etc.
Veja um exemplo:
No exemplo que acabamos de ver, o "vai um" indicou a troca de 10 dezenas por uma centena.
É importante que a criança perceba a relação entre sua ação com o material e os passos efetuados na operação.
10. O JOGO DE RETIRAR
Objetivos: compreender o mecanismo do "empresta um" nas subtrações com recurso; estimular o cálculo mental.
Esta atividade pode ser realizada como um jogo de várias rodadas. Em cada rodada, os grupos sorteiam um cartão e uma papeleta. No cartão há um número e eles devem pegar as peças correspondentes a essa quantia. Na papeleta há uma ordem que indica quanto devem tirar da quantidade que têm.
Por exemplo: cartão com número 41 e papeleta com a ordem: TIRE 28.
Vence a rodada o grupo que ficar com as peças que representam o menor número. Vence o jogo o grupo que ganhar mais rodadas.
É importante que, primeiro, a criança faça várias atividades do tipo: "retire um tanto", só com o material. Depois que ela dominar o processo de "destroca", pode-se propor que registre o que acontece no jogo em uma tabela na lousa.
Isto irá proporcionar melhor entendimento do "empresta um" na subtração com recurso. Quando o professor apresentar essa técnica, poderá concretizar os passos do cálculo com auxílio do material ou desenhos do material.
O "empresta um" também pode indicar a "destroca" de uma centena por 10 dezenas ou um milhar por 10 centenas, etc. Veja o jogo seguinte:
11. "DESTROCA"
Objetivos: os mesmos da atividade 10.
Cada grupo de alunos recebe um dado marcado de 4 a 9 e uma placa. Quando o jogador começa, todos os participantes têm à sua frente uma placa. Cada criança, na sua vez de jogar, lança o dado e faz as "destrocas" para retirar a quantidade de cubinhos correspondente ao número que sair no dado. Veja bem: esse número dá direito a retirar somente cubinhos.
Na quarta rodada, vence quem ficar com as peças que representam o menor número.
Exemplo: Suponha que um aluno tenha tirado 7 no dado. Primeiro ele troca uma placa por 10 barras e uma barra por 10 cubinhos:
Depois, retira 7 cubinhos:
Salientamos novamente a importância de se proporem várias atividades como essa, utilizando, de início, só o material. Quando o processo de "destroca" estiver dominado, pode-se propor que as crianças façam as subtrações envolvidas também com números.


Nenhum comentário: